• Technology
  • The Economist

Wireless Telecoms: Watch This Airspace

Four disruptive technologies are emerging that promise to render not only the next wave of so-called 3G wireless networks irrelevant, but possibly even their 4G successors.

The plunging cost of processing power means that smart antennas, which started out as an expensive military technology, are now a cheaper way to increase network capacity than building new base-stations. Yet the response of big infrastructure suppliers such as Nokia, Ericsson, Lucent and Nortel has been lukewarm. Nokia says there is no need for smart-antenna technology, because the price of base-stations is also falling fast. Ericsson, Lucent and Nortel have their own versions of the technology, but are not pushing it to operators. Marty Cooper, ArrayComm’s chief executive, who pioneered cellular telephony at Motorola, smells a rat. “Manufacturers determine what technologies are used — and they want to sell more base-stations,” he says.

But smart-antenna firms hope that the advent of 3G will work in their favour, since 3G networks will require far more base-stations than existing 2G networks, in order to provide extra capacity for graphics, video and other new services. The option to provide some of this extra capacity via smart antennas, rather than additional base-stations, ought to appeal to operators. “3G has driven the need for our technology to the surface,” says Dr Cooper. He hopes that operators will put pressure on infrastructure suppliers to offer base-stations with smart antennas, and expects the technology to be ubiquitous by 2010.

In the meantime, ArrayComm is pushing ahead with a technology of its own, called i-Burst. It claims that i-Burst offers far better performance than 3G networks at a fraction of the cost. Retro-fitting smart antennas on to cellular networks can go only so far, says Mr Goldburg, because cellular networks were not designed with smart antennas in mind. By contrast, i-Burst is a mobile wireless-data technology that was designed specifically to exploit smart antennas. Compared with 3G, Mr Goldburg reckons it is about 40 times more efficient.

The fact is that i-Burst base-stations — equipped with smart antennas and colocated with the base stations of a 2G network — can provide a throughput of one megabit (1m bits) per second, at about one-thirtieth of the cost of building a 3G network for the same area. Thus, i-Burst plugs the gap between 3G networks (long-range, but capable of 384 kilobits per second) and the popular WI-FI wireless-network standard used to connect laptops to the Internet (short-range, and capable of 11 megabits per second). At the moment, the i-Burst receiver is a brick-like object about the size of a video cassette that fits on to the lid of a laptop, and draws about as much power as a WI-FIPC-card. But ArrayComm’s licensees, including Kyocera, a Japanese electronics conglomerate, expect to be able to produce i-Burst receivers as PC-cards.

ArrayComm is pushing i-Burst in three separate ways. The company has bought spectrum in Australia and plans to launch a commercial service there in 2003. Hanaro Telecom of South Korea plans to launch i-Burst as a wireless broadband service this summer. ArrayComm is also trying to persuade firms that operate cellular-network towers on behalf of wireless operators to install i-Burst equipment. In short, Dr Cooper hopes that i-Burst will cut two technological Gordian knots at the same time, providing fast mobile-data access, and also a wireless solution to the “last mile” problem of providing high-speed broadband access to the home.


Your email address will not be published. Required fields are marked *