• Technology
  • The Economist

Wireless Telecoms: Watch This Airspace

Four disruptive technologies are emerging that promise to render not only the next wave of so-called 3G wireless networks irrelevant, but possibly even their 4G successors.

The advent of WI-FI networking equipment has also provided a foothold. With the right software, it is possible to allow WI-FI-equipped laptops to act as relays for other nearby machines, letting packets make multiple hops from machine to machine to get to and from the Internet. Dave Johnson, an ad hoc researcher at Rice University in Houston, Texas, has built demonstration systems based on WI-FI devices in moving cars that do exactly this. Ad hoc networking might also expand the capabilities of mobile phones. People attending the “Burning Man” festival in the Nevada desert would then be able to call each other, even without any local infrastructure, suggests Charles Perkins, an ad hoc guru at Nokia’s research centre in Mountain View, California. As well as working without any infrastructure, ad hoc-capable mobile phones would have other advantages. In a crowded environment, such as a sports arena, phones could pass traffic from other phones to base-stations in adjacent cells, thus boosting capacity. Calls between users within the arena could be handled locally, without loading the cellular network.

The ad hoc/cellular hybrid approach would also improve coverage at the edges of a cellular network, since users just outside the network’s range would be able to “hop” their calls into the network via somebody else’s phone; in the process, they would extend the effective size of the network, allowing still more distant users to “multihop” their way in. No wonder Nokia and other mobile-infrastructure manufacturers are keeping a close eye on ad hoc networking.

But there are still several problems to overcome. The first is a conflict of interest: do you really want somebody in another row of seats using your phone as a relay and draining your battery? The trade-off, says Dr Haas, is that the service quality improves for all, at the cost of handling each other’s traffic. Some proposed ad hoc architectures, he says, include micro-payment schemes to ensure that everybody pulls their weight.

Another difficulty is agreeing on protocols; ad hoc will work only if devices are ubiquitous, and support an agreed standard. But different situations require different standards. This may require hybrid, adaptive protocols, where the network’s behaviour adjusts depending on the circumstances.

The ad hoc approach is also favoured by proponents of ultra-wideband (UWB) transmission. UWB marks a radical departure from existing wireless technologies because, rather than transmitting and receiving on a particular radio frequency, it involves transmitting very short pulses on a wide range of frequencies simultaneously at low power. Such pulses, which are typically less than a billionth of a second long, pass unnoticed by conventional radio receivers, but can be detected by a UWB receiver. Information is encoded into streams of pulses, millions of which can be sent every second, by varying their polarity or their timing relative to an apparently random but pre-arranged schedule. (A slightly early pulse might signify a one, and a late pulse a zero.)

UWB has been struggling to establish itself for years. That is because its unconventional approach requires regulatory approval. But its fortunes received a massive boost in February 2002, when America’s Federal Communications Commission (FCC) gave limited approval for UWB transmissions, despite the objections of air-traffic controllers and telecoms firms worried that they might interfere with their existing networks. Similar moves are expected to follow in Europe and Asia, says Jim Baker of Time Domain, a leading UWB firm based in Huntsville, Alabama.


Your email address will not be published. Required fields are marked *